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Abstract

In data mining, one often needs to analyze datasets with a very large
number of attributes. Performing machine learning directly on such data
sets is often impractical because of large run times, excessive complexity of
the fitted model (often leading to overfitting), and the well-known “curse
of dimensionality.” In practice, to avoid such problems, feature selection
and/or extraction are often used to reduce data dimensionality prior to the
learning step. However, existing feature selection/extraction algorithms
either evaluate features by their effectiveness across the entire data set or
simply disregard class information altogether (e.g., principal components
analysis). Furthermore, feature extraction algorithms such as principal
components analysis create new features that are often meaningless to
human users. In this article, we present input decimation, a method that
provides “feature subsets” that are selected for their ability to discriminate
among the classes. These features are subsequently used in ensembles of
classifiers, yielding results superior to single classifiers, ensembles that
use the full set of features, and ensembles based on principal components
analysis on both real and synthetic datasets.

1 Introduction

In data mining, one often deals with large datasets with a large number of input
attributes [14, 23, 25]. Performing machine learning directly on such datasets
is typically impractical for many reasons. Generally, for such data sets:

e Learning algorithms are slow due to the large number of parameters that
need to be learned;



e Many attributes are irrelevant for the task at hand, resulting in wasted
effort, overfitting, or worse, learning spurious relationships; and

e The number of training examples needed to produce a meaningful model
over the full attribute space is prohibitively large—this is known as the
“curse of dimensionality” [7].

In an attempt to alleviate some of these problems, feature selection or feature
extraction is often used prior to learning. Feature selection is the act of choos-
ing a subset of the original features according to some criterion for deciding
how relevant each feature is for the task at hand.! However, these methods,
when applied to classification problems, typically choose features according to
the criterion of how useful they are at discriminating among all classes, or sim-
ply choose features that have high variability with little or no regard for their
discriminatory power. In many real datasets, however, there are features that
are very useful at distinguishing one class from the remaining classes. Fea-
ture extraction involves calculating new features from the original ones with
the intent of keeping the “salient information” while reducing the dimension-
ality of the data [63], often resulting in new features that are not intuitively
understandable. Furthermore, many unsupervised feature extraction methods
such as Principal Components Analysis (PCA) disregard class information and,
therefore, are not suited for finding features that are useful for classification.

In this paper, we present input decimation, a method that chooses different
subsets of the original features for use in classifiers that are part of an ensemble.
This method not only reduces the dimensionality of the data, but uses this
dimensionality reduction to reduce the correlation among the classifiers in an
ensemble, thereby improving the classification performance of the ensemble [58,
61] (the relationship between ensemble performance and correlation among its
components has been extensively discussed [2, 31, 43, 59]). In this article, we
present details of this method, along with extensive simulations on both real
and synthetic data sets showing that input decimation reduces the error up
to 90% over single classifiers and ensembles trained on all features, as well as
ensembles trained on principal components. In this study we use the “averaging”
ensemble? to compare ensembles with and without input decimation, rather than
compare input decimation to other more sophisticated methods such as bagging
and boosting. This allows us to isolate the effects of removing features, which
is the goal of this paper. We select the averaging ensemble because, due to
its simplicity, it provides a clear comparison of the results with and without
input decimation. Ensemble methods such as bagging, boosting, and stacking
(discussed in Section 2) can be used in conjunction with input decimation—in
that sense, input decimation is orthogonal to those other methods. However,
the conjunction of input decimation with these other methods is outside the
scope of this paper and we plan to study this in the future.

1Tn this article we restrict attention to classification problems.
2Given a new example, the averaging ensemble returns the average of the outputs of the
base classifiers applied to that example. See Section 3 for a more detailed explanation.



In Section 2, we briefly review known methods for dimensionality reduction
and ensemble methods, and discuss an ensemble framework that quantifies the
need for correlation reduction among the classifiers in an ensemble (see [59] for
further details). In Section 3 we present input decimation, and in Section 4 we
provide experimental results on three data sets from the PROBEN1 benchmark
[51] and the UCI Machine Learning Repository [8], along with several synthetic
datasets. We conclude with a discussion of the benefits and limitations of input
decimation and highlight directions for future research.

2 Background

As we mentioned above, input decimation uses dimensionality reduction to re-
duce the correlation among classifiers in an ensemble, yielding superior ensemble
classifier performance. Because input decimation is both a dimensionality re-
duction method and an ensemble method, below we present brief backgrounds
on both. Furthermore, to emphasize the connection between these two concepts,
we summarize a framework that shows that reducing the correlation among clas-
sifiers (e.g., through input decimation) in an ensemble improves classification
performance.

2.1 Dimensionality Reduction

Most of the known dimensionality reduction methods are examples of one of
two different classes of methods: feature selection and feature extraction. In
feature selection one chooses some criterion (e.g., statistical correlation or mu-
tual information) to decide how relevant each feature is for the classification
or regression task and chooses some subset of the features according to this
criterion [3, 9, 10, 19, 32, 40]. In filter methods for feature selection, the data
with the chosen subset of features is then presented to a learning algorithm. In
embedded methods, feature selection is done as part of the learning algorithm.
Decision-tree learning (e.g., [52]) is one example in which an embedded feature
selection method is used—attributes are chosen based on information gain at
each node in the decision tree. In wrapper methods, the learning algorithm
itself is run with various subsets of features and the feature subset yielding
the best performance is chosen [37]. However, most of these feature selection
methods attempt to choose features that are useful in discriminating across all

classes. One exception is [39] that breaks an L-class problem into ( é ) two-

class problems and performs feature selection within each of those problems. In
many real-world problems, there are features that are useful at distinguishing
whether an instance is of one particular class but are not useful at distinguish-
ing among the remaining classes. Most feature selection algorithms also choose
individual features in a greedy manner, i.e., they do not account for the inter-
actions among various sets of features. Methods that attempt to overcome that
(e.g., [38]) are computationally more expensive, a problem that is accentuated
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Figure 1: PCA and classification: The first principal can provide a good dis-
criminating feature (left) or a poor one (right), since the class membership
information is not used. The “x” points and “0” points represent instances of

two different classes.

by large datasets.

Feature extraction algorithms such as Principal Components Analysis (PCA) [7,

33, 48] or Independent Component Analysis (ICA) [30] reduce the dimension-
ality of the data by creating new features. Linear PCA, perhaps the most
commonly used feature extraction method, creates new uncorrelated features
that are linear combinations of the original features. The aim of PCA is to find
the set of features on which the data shows highest variability. However, it is
generally difficult to intuitively understand these new features. Furthermore,
PCA gives high weight to features with higher variabilities whether they are
useful for classification or not. In other words, because unsupervised feature
extraction methods such as PCA do not use the class labels to create the new
features, they often yield features that are not useful for classification [7]. Fig-
ure 1 demonstrates the perils of not using class information. The left half of
the figure shows a case in which PCA works effectively. In this case the first
principal component corresponds to the variable with the highest discriminating
power, i.e., it does a good job of separating the “x” class from the “0” class. The
right half shows a similar dataset (similar data distribution and linearly separa-
ble). However, because the first principal component is not “aligned” with the
class labels, selecting this component is a poor choice for this problem. Indeed,
an input set consisting of only the first component would provide practically
random decisions on this data set. These examples show that using PCA for
classification problems is a dangerous process, as there is little information to



determine the amount of discriminating information that is kept in the principal
components that account for most of the variability in the input data.

There are variations on PCA that use local and/or nonlinear processing to
improve dimensionality reduction [16, 35, 36, 46, 47, 56]. One such method
uses vector quantization to create several cells, and performs PCA within each
cell [35]. Each example is then coded using the principal components for the
closest cell. Although these methods implicitly account for some class informa-
tion and therefore are better suited than global PCA methods for classification
problems, they do not directly use class information.

2.2 Ensembles and Correlation
2.2.1 Ensemble methods

A classification task consists of determining the class membership of a pat-
tern, based on an input vector consisting of features describing that pattern.
Learning generally involves using training examples—patterns with known class
memberships—to construct a classifier that generalizes, i.e., responds correctly
to novel patterns. However, there are normally many possible generalizations
based on a finite training set [41]. For example, when training a feed-forward
neural network classifier, different initial weights, learning rates, momentum
terms, and architectures (e.g., number of hidden layers and hidden units, con-
nections, single vs. distributed output encoding, etc.) affect how the classifier
performs on novel examples. Choosing a single classifier, even the “best” clas-
sifier in terms of generalization error, is not necessarily optimal, because poten-
tially valuable information contained in the other classifiers may be discarded.
This observation leads to the idea of classifier ensembles, where the outputs of
multiple classifiers are “pooled” before a class label is assigned [11, 26, 62]. In
constructing an ensemble, two issues arise: the method by which the outputs
are combined, and the method by which the ensemble’s individual classifiers
(often referred to as base classifiers) are constructed. (See [17, 57] for a review
of ensemble methods.)

Plurality voting is one of the most basic methods of combining [4, 26]. If the
classifiers provide probability values, simple averaging is an effective ensemble
method and has received a lot of attention [42, 50, 59]. Weighted averaging
has also been proposed and different methods for computing the weights of
the classifiers have been examined [6, 27, 31, 34, 42, 44]. Such linear combin-
ing techniques have been mathematically analyzed in depth [12, 27, 50, 59].
Non-linear ensemble schemes include rank-based combining [1, 29], belief-based
methods [54, 64, 65], and order-statistic ensembles [60].

In constructing the individual classifiers to be combined, many methods are
used, including simply training all classifiers as if they were stand-alone clas-
sifiers and then combining them into an ensemble. However, one can also try
to actively promote some diversity among the classifiers (we elaborate on the
reasons for this in the next section). One such method partitions the training
set much like one does when using cross-validation and trains one classifier on



each partition [28, 59]. Another method, known as bagging [13], constructs sev-
eral sets of m training examples drawn randomly with replacement out of the
original set of m training examples and trains one classifier using each of these
resampled training sets. The classifiers are combined using plurality voting.
Boosting [24] is similar to bagging, except that the process of drawing training
examples and constructing classifiers is done iteratively [21, 22, 24]. A prob-
ability distribution on the training examples is maintained and training sets
are drawn with replacement according to this distribution. After a classifier is
constructed, the probability distribution is adjusted so that examples that were
misclassified are more likely to be chosen for use in training the next classifier
than examples that were correctly classified. Another way of constructing a set
of complementary classifiers is to give each classifier a different output target.
One such method is error-correcting output coding [18]. In this method, the set
of classes is randomly partitioned into two subsets (4; and B;) T times (that
isl € {1,2,...,T}), and each of the T classifiers is assigned one partition. The
Ith classifier’s copy of the training set is relabeled as follows: the example is
considered positive if the class of that example is in B; and negative if the class
is in A;. Of course, because the data is relabeled differently for each classi-
fier, each classifier will be different. Each of these methods relies on reducing
the correlations among the classifiers that are part of an ensemble. We now
summarize a classification framework that explicitly connects the reduction in
the classification error of an ensemble to the correlation among the constituent
classifiers in that ensemble.

2.2.2 The Need for Correlation Reduction

In this section, we demonstrate that an ensemble has less additional error (be-
yond the Bayes error obtained by the best possible classifier) than a single clas-
sifier, and the decrease in error is proportional to the reduction in correlation
among the members of the ensemble.

In this article we focus on classifiers that model the a posteriori probabilities
of output classes. Such algorithms include Bayesian methods, and properly
trained feed-forward neural networks [53, 55]. Therefore, we can model the ith
output of such a classifier as follows (details of this derivation are in [58, 59]):

fi(z) = P(Ci|z) + mi(z),

where P(C;|z) is the true posterior probability of the ith class given instance
z, and 7n;(z) is the error associated with the ith output—the difference between
the true and learned posteriors. Given an input z, if we have one classifier, we
classify z as being in the class ¢ whose value f;(z) is largest.

Instead, if we use a ensemble that calculates the arithmetic average of the
outputs of N classifiers f/"(z) , m € {1,..., N}, then we get an approximation



to P(C;|z) as follows:

N
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and nf"(x) is the error associated with the ith output of the mth classifier.
Now, the variance of 7j;(x) is given by [59]:
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If we express the covariances in terms of the correlations (cov(x,y) = corr(x,y)ozoy),
assume the same variance U%i across classifiers for each output, and use the av-
erage correlation factor among classifiers, §;, given by

= F= L L orr ) @), @
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then the variance becomes:
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So we have obtained the variance of the ensemble as a function of the vari-
ances of the base classifiers. We would like to compute the variances of the
decision boundaries obtained by the ensemble and the base classifiers.

We can show that the variance of the decision boundary between classes i
and j is

= (4)

where 5 = (pi(x) — p;(2))%.

We would like to use this result to get a distribution on the decision boundary
of the classifier. Figure 2 shows the true posterior probabilities of two classes
C; and Cj (the solid lines), the posteriors obtained by a non-ideal classifier (the
dotted lines), the Bayes error region (the lightly-shaded area) which depicts the
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Figure 2: Decision boundaries and error regions associated with approximating
the posterior probabilities. The solid lines are the true posterior probabilities of
classes C; and C;. The dotted lines are the approximate posterior obtained by
a non-ideal classifier. The lightly-shaded area is the Bayes error. The darkly-
shaded area is the additional error obtained by a non-ideal classifier.

minimum achievable error, and the additional error (the darkly-shaded area)
obtained by a non-ideal classifier because its decision boundary is offset by b
relative to the optimum boundary. Defining A(b) to be the added error as a
function of the boundary offset, we can define the expected added error, E,44,
to be

Fogg = /_ =AW o (b)db (5)

where f, is the density function of b. If we assume that the 7;(z)’s are
distributed according to N (0,07,), then one can show that b has zero mean and

. 207, 2 . _ I
variance o7 = ;T;’ and F,qq = Zt. Similarly, if the 7;(z)’s are distributed

according to N (0,0%-1.), then one can show that the decision boundary b%%¢ of
the averaging ensemble has zero mean and variance
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Since the noises between classes are i.i.d., we get

1
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Based on this variance, we can compute the variance of the decision boundary
and, generalizing this result to the classifier error, we obtain the relationship
between the error of the ensemble and that of an individual classifier:

S o

ES = iabme (10)
s 1+6(N-1)
1+6(V-1
= Eadd(#) (12)
where
L
0= Z-Pz'(si (13)
i=1

and P; is the prior probability of class i.

Equation 12 quantifies the connection between error reduction and the cor-
relation among the errors of the classifiers. This result leads us to seek to reduce
the correlation among classifiers prior to using them in an ensemble. In the next
section we present the input decimation algorithm which merges dimensionality
reduction and correlation reduction to provide classifier ensembles.

3 Input Decimation

Unlike methods such as bagging and boosting which work by using different
subsets of input patterns, input decimation focuses on subsets of input features.
Intuitively, input decimation decouples the classifiers by exposing them to differ-
ent aspects of the same data. This method trains L classifiers, one corresponding
to each class in an L-class problem. For each classifier, the method selects a



subset of the input features according to their absolute correlation to the corre-
sponding class®. The objective is to “weed” out all input features that do not
carry much discriminating information relevant to the particular class.

Our learning algorithm takes a training set of the form

{(xlvyl)v (X27y2)7 LR (Xm7 ym)}

as input, where m is the number of training examples. Each x; has ||F||
elements (where F' is the set of input features) representing the values of the
input features in example i. Each y; has L elements, where L is the number of
classes, y; = 1 if example i is an instance of class [ and y; = 0 if example i is
not an instance of class [. Our algorithm also requires as input the number of
highest-correlation input features to be retained for each base classifier (n; for
1 e€{1,2,...,L}). Given these inputs, our algorithm operates as follows:

e For each class [ € {1,2,...,L},
— Compute the correlation between each feature and the output for

class .

— Select n; features having the highest correlation with the class [ out-
put. Call this set of features Fj.

— Use alearning algorithm to realize the mapping from each new feature
set (F}) to the outputs. Call the resulting classifier f!.

Given a new example x, we classify it as follows:

e For each classifier f in the ensemble (I € {1,2,...,L}),
— Calculate the output fi(z) for each class k € {1,2,...,L}.
e For each class k € {1,2,...,L},

— Calculate f2*¢(z) = Y1, fL(z).

e Return the class K = argmazy, f2V° (z).

The main advantage of input decimation over standard dimensionality re-
duction methods such as principal components analysis (PCA) is that input dec-
imation selects features based on their correlation with the outputs. Cherkauer
uses a similar feature selection method, but the feature subsets are selected by
hand [15], whereas Bay [5] and Zheng and Webb [66] propose a method where
the feature subsets are selected at random. In this paper, we report results on
real datasets in which each decimated feature set had the same dimensionality
(i-e., we chose a fixed number of highest-correlation inputs for each classifier) as

3This method may yield different feature subsets only when there are at least three classes.
In a two-class problem, features strongly correlated with one class will be strongly anti-
correlated with the other class, so the same features would be chosen for both classifiers.
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well as results with decimated feature sets of different dimensionality. We also
present controlled experiments on synthetic datasets.

As mentioned earlier, input decimation seeks to reduce the correlations
among individual classifiers by using different subsets of input features, while
methods such as bagging and boosting attempt to do so by choosing different
subsets of training patterns. These facts imply that input decimation is orthog-
onal to pattern-based methods such as bagging and boosting, i.e., one can use
input decimation in conjunction with those methods. We will not explore this
point in this paper.

4 Experimental Results

In this section, we present the results of input decimation on several synthetic
and real datasets. In these experiments, for an L-class problem, we train L
classifiers?, each of which uses some of the features having highest correlation
with the presence or absence of one particular class. The results given in the
tables are percentages correct and standard error on the test set averaged over
20 independent runs.

As a standard against which to compare our input decimation results, we
also trained a classifier on the full feature set (referred to as the “single clas-
sifier”) and separately trained L copies of the same classifier and incorporated
them into an ensemble average (referred to as the “original ensemble”). Because
the neural networks in our original ensemble are given different random initial
sets of weights, they do perform differently after training even though they are
all trained with exactly the same training set. Indeed, the results in this paper
show that the original ensemble is an interesting ensemble that often performs
significantly better than each of its constituent classifiers. Additionally, com-
paring input-decimated ensembles with these original ensembles is the only way
of directly testing the benefits of removing input features from the constituent
classifiers.

4.1 Synthetic Data
We tested input decimation on the following six synthetic datasets.
e Set 1:

— Three classes—one unimodal Gaussian per class.

— 300 training patterns and 150 test patterns—100 training and 50 test
patterns per class.

4In this article we use multi-layered perceptrons (MLP) trained with the backpropagation
algorithm as our classifiers. The learning rates and momentum terms were chosen by trying
values from 0 to 1 in increments of 0.05 and finding the settings that yielded the best results
with a single neural network. The number of hidden units was selected by starting with five
hidden units and trying more hidden units in increments of five until we got a locally optimal
performance, i.e., we chose a number such that up to 20 more or 20 fewer hidden units led to
worse performance than the chosen number.

11



— 100 features per pattern where there are:

* 10 relevant features per class—each class’s peak is a multivariate
normal distribution in 10 independent dimensions distributed as
N (40, 5%). There are no features in common among the three
classes’ peaks. Therefore, there are 30 relevant features.

* 70 irrelevant features—distributed as U[—100, 100].

e Set 2: Same as Set 1, except that only 50 irrelevant features were added
to the 30 relevant features, for a total of 80 features in the dataset.

e Set 3: Same as Set 1, except that only 20 irrelevant features were added
to the 30 relevant features, for a total of 50 features in the dataset.

e Set 4: Same as Set 1, except that there are 1000 training examples and
500 testing examples per class—a total of 3000 training examples and 1500
testing examples.

e Set 5: Same as Set 1, except that there is overlap among the relevant
features for each class (e.g., classes one and two have three relevant features
in common).

We deliberately chose dataset 1 be favorable to input decimation. In par-
ticular, we decided to have a large number of features relative to the number
of examples because we feel that input decimation works best in these situa-
tions where it can alleviate the curse of dimensionality. We also did not have
any overlap among the relevant features for each class with the hope that input
decimation would choose nonoverlapping feature subsets for each base classifier.
We included a large number of completely irrelevant features to see how much
they lead our algorithm astray, if at all. As mentioned earlier, we needed to
have at least three classes—with two classes, features that are strongly corre-
lated with one class are strongly anti-correlated with the other class, so the
two base classifiers would get exactly the same features and there may not be
significant correlation reduction.

Datasets 2 and 3 were chosen as additional points of comparison to see how
much completely irrelevant features affect our algorithm. We expected that
those ensembles whose base classifiers use irrelevant features would perform
better as the number of irrelevant features available in the dataset increases.
This is because with more irrelevant features to choose from, the different base
classifiers are more likely to have different irrelevant features, which would leave
the base classifiers’ performances the same but would decrease the correlations
among them.

We chose dataset 4 to have the same profile as dataset 1 except with more
examples. On the one hand, we felt that input decimation would perform better
for dataset 4 because with more training examples, we are less likely to have
features that happen to be well-correlated with the outputs in the training set
and not in the test set. The individual classifiers are likely to perform better
on this dataset than in dataset 1. However, we felt that the correlations among

12



the base classifiers would increase. We also felt that the original single neural
networks and ensembles would perform better for this dataset than for dataset
1 because of the greater number of examples; therefore, we thought that the
relative improvement through decimation would be less.

Dataset 5 was chosen to have overlap among the features relevant to each
class. We felt that input decimation would not perform as well here as with
dataset 1: the individual classifiers would perform comparably but the correla-
tions would be higher due to the overlapping features.

In the next subsections, we present our results for each dataset followed by
our analysis. Table 1 provides the classification performance for single classifiers
and ensembles on the full feature set®, along with the correlations among the
individual classifiers in the ensemble. Note that the original ensembles always
give some improvement over the individual classifiers in each case. In Tables
2-6, we provide the single classifier and ensemble results when only subsets of
the feature set or principal components are used. The first column provides the
dimensionality of the data (number of features per classifier), the second column
specifies which dimensionality reduction method was used (input decimation or
PCA), and the last column provides the average correlation among the classifiers
in the ensemble.

Table 1: Single Classifier and Ensemble Performance on the Full Feature Set
Single Ensemble Corr.

Set 1 84.267 + 2.9394 88.333 £ 1.9720 0.678

Set 2 83.467 + 3.1241 89.600 £ 2.0374 0.706

Set 3 84.633 + 2.8005 89.500 £ 2.0535 0.726

Set 4 90.480 + 0.6849 93.393 £ 0.4948 0.808

Set 5 78.500 + 2.3273 84.633 £ 2.3710 0.676

4.1.1 Set 1

Table 2 presents the results for the first data set.® Input decimation provided
the best performance for subsets with 20 and 30 features. This is consistent with
the data as there are 30 relevant features, out of which at least 10 are needed for
each classifier. The 5 and 10 feature ensembles also performed fairly well, even
though the single component classifiers performed poorly. In these cases, there
is very little correlation among the individual classifiers, which accounts for the
substantial improvements in performance due to the ensemble (see Equation 12).

Note that in cases where more than 30 features were used, the performance
of the ensemble declined with the addition of additional features, i.e., as more
and more irrelevant features were taken into account. Indeed, for 30 or fewer
features, input decimation significantly outperformed PCA while for 40 or more

5The ensemble consists of 3 classifiers for all data sets.
8The single classifier used was an MLP with a single hidden layer consisting of 95 units,
trained using a learning rate of 0.2 and a momentum term of 0.5.
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Table 2: Synthetic Dataset 1: Influence of Dimensionality on Ensemble Perfor-

mances

Dim. Single Ensemble Corr.
70 DF  86.911 £ 2.157 91.733 £ 1.467 0.751
PCA 86.422 + 2.689 91.133 + 1.634 0.769

60 DF  87.678 £ 2.510 92.333 £ 1.844 0.759
PCA 85.778 £ 2.252 90.867 + 1.416 0.754

50 DF  89.500 + 2.112 93.200 + 1.470 0.783
PCA 86.467 +2.409 91.300 &+ 1.542 0.764

40 DF 90.189 +£1.865 93.4+ 1.133  0.823
PCA 86.744 £ 2.162 91.700 + 0.954 0.787

30 DF 91.322 £1.911 95.233 £ 0.851 0.811
PCA 86.456 + 2.566 90.733 + 1.685 0.765

20 DF  85.756 £ 2.523 95.033 + 1.570 0.638
PCA 86.445 +£2.093 91.100 + 1.480 0.784

10 DF  66.989 + 3.165 93.967 + 2.005 0.130
PCA 85.656 + 2.211 90.567 + 1.354 0.783

5 DF  66.333 £ 3.058 94.533 + 2.050 0.126
PCA 84.856 + 3.544 88.733 +£ 0.814 0.825

features, input decimation only had marginally higher performance. However,
except for the 70-feature ensemble, all the input decimation ensembles provided
statistically significant improvements over the original ensembles. Also, note
that the single decimated networks with 20 and more features outperformed
the original single classifier. This perhaps surprising result (as one might have
expected only the ensemble performance to improve when using subsets of the
features) is mainly due to the simplification of the learning tasks, which allows
the classifiers to learn the mapping more efficiently.

Interestingly, the correlation among classifiers does not decrease until a very
small number of features remain. We attribute this to the removal of noise—
removing noise increases the amount of information shared between the classi-
fiers. Indeed, the correlation increases steadily as features are removed until we
reach 30 features (which corresponds to the actual number of relevant features).
After that point, removing features reduces the correlation and the individual
classifier performances. However, the ensemble performance still remains high.
This experiment clearly shows the trade-off presented in Equation 12: one can
either increase individual classifier performance (as for DF with more than 30
features) or reduce the correlation among classifiers (as for DF with less than
20 features) to improve ensemble performance.

14



Table 3: Synthetic Dataset 2: Influence of Dimensionality on Ensemble Perfor-

mances

Dim. Single Ensemble Corr.
70 DF  84.767 £ 2.419 90.000 + 1.955 0.717
PCA 84.422 + 2.625 89.600 + 1.902 0.729
60 DF  85.778 £ 3.197 91.533 £ 1.968 0.733
PCA 85922 +2.724 90.533 + 1.681 0.742
50 DF  87.611 + 2.532 92.233 £ 1.567 0.761
PCA 86.767 +2.370 91.033 +£1.949 0.773
40 DF 89.667 +2.193 93.700 + 1.043 0.823
PCA 79.567 +2.416 88.333 + 2.071 0.659
30 DF  90.067 £ 2.508 94.500 + 1.364 0.814
PCA 80.078 & 2.502 90.667 + 1.862 0.675
20 DF  87.089 £+ 2.094 95.467 + 1.343 0.638
PCA 80.611 +2.353 90.267 + 1.781 0.690
10 DF 67.356 £ 2.601 93.400 + 2.054 0.153
PCA 80.111 £+ 2.006 89.600 + 1.890 0.714
5 DF  66.100 £+ 3.038 90.733 + 2.520 0.145
PCA 78.678 +2.057 88.333 +£1.291 0.743

4.1.2 Set 2

Table 3 presents the results for the second data set which is obtained by reducing
the number of irrelevant features (from 70 to 50) from the first dataset.” As we
described earlier, we expected that the performances of ensembles whose base
classifiers used irrelevant features (40 or more inputs) would not be as good for
this dataset as for the first dataset. As indicated earlier, we felt that, given the
same number of irrelevant features, the individual decimated base classifiers for
dataset 1 would perform comparably to those of dataset 2 but would have lower
correlations among them, leading to superior ensemble performance. We did
expect the decimated ensembles with close to the number of relevant features
to perform significantly better than the original single classifier and ensemble.

The decimated ensembles with 20, 30, and 40 features outperformed the
original ensemble and PCA-based ensemble significantly, while the 10-feature
ensemble performed marginally better. The remaining decimated ensembles
provided results that were statistically similar to those of the original ensemble.
Note that, just as it was for the first data set, in this case, the single classifiers
with 20 or more features outperformed the single original classifier, demonstrat-
ing the improvement we can achieve through dimensionality reduction alone, if
the original feature set is noisy.

However, our first hypothesis involving comparisons with the performance
on dataset 1 did not materialize. The performances of decimated ensembles with

"The single classifier used was an MLP with a single hidden layer consisting of 65 units,
trained using a learning rate of 0.2 and a momentum term of 0.5.

15



too many features (10 or more of the irrelevant features, i.e., 40 or more total
features) did perform slightly worse on dataset 2 than on dataset 1; however,
this was not due to higher correlations among the base classifiers but rather
slightly lower performances of the base classifiers.

4.1.3 Set 3

Table 4 presents the results for the third data set, which is obtained by reducing
the number of irrelevant features (from 70 to 20) from the first dataset.® That
the original single classifier and ensemble perform better for this dataset rela-
tive to dataset 1 (see Table 1) is not surprising, because with fewer irrelevant
features, there is less noise to “overfit.” Therefore in this dataset, the gains
due to input decimation are smaller. Indeed only the 10-dimensional decimated
ensemble significantly outperformed the original ensemble while the others pro-
vided only marginal improvements. Additionally, the ensemble with 40 features
(10 irrelevant features) did not perform as well here as for the previous two
datasets, which further demonstrates what we discussed in the previous section
about each base classifier having to choose from a smaller pool of irrelevant
features.

Table 4: Synthetic Dataset 3: Influence of Dimensionality on Ensemble Perfor-

mances

Dim. Single Ensemble Corr.
40 DF  86.478 4+ 2.389 91.633 + 2.060 0.747
PCA 87.222 +2.427 92.167 + 1.412 0.760
30 DF  87.400 + 2.826 92.333 +1.693 0.759
PCA 88.367 £2.370 92.200 + 1.621 0.790
20 DF  84.133 £ 2.461 90.933 + 1.583 0.660
PCA 89.411 +£2.016 93.000 £+ 1.498 0.834
10 DF  68.878 &+ 2.810 94.167 + 2.804 0.204
PCA 91.056 £ 1.909 93.633 + 0.977 0.870
5 DF  65.889 &+ 3.045 90.933 + 2.255 0.123
PCA 92211 £1.195 93.700 + 1.064 0.894

4.1.4 Set 4

Table 5 presents the results for the fourth data set, which is obtained from the
first dataset by increasing the number of examples in the training and test sets
by tenfold.® The performance improvements (relative to the original classifiers)
due to decimation are smaller here than they were for the previous datasets as we
hypothesized; however, all the decimated ensembles with 20 or more features still

8The single classifier used was an MLP with a single hidden layer consisting of 45 units,
trained using a learning rate of 0.2 and a momentum term of 0.5.

9The single classifier used was an MLP with a single hidden layer consisting of 95 units,
trained using a learning rate of 0.2 and a momentum term of 0.5.
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significantly outperformed the original ensemble. In this case, single decimated
classifiers with 20 or more features do not outperform the original classifiers to
the same extent as they did for dataset 1. This is because with the increase in
the number of samples, the original classifier has a better chance to extract the
“signal” from the “noise” and thus is less affected by the irrelevant features.

Also, in this experiment the PCA based ensembles performed well and were
only beaten by input-decimated ensembles for subsets of 20 and 30 features.
Furthermore, the first few principal components found by PCA carry good dis-
criminating information in this case, explaining why there is such little variabil-
ity between the performance of the PCA ensembles with varying numbers of
features. Although the behavior of the correlation (as the number of features
changes) is very similar to that observed for Set 1, the actual correlation values
are higher across the board. This is not surprising since with more data, the
similarities between the classifiers are amplified.

Table 5: Synthetic Dataset 4: Influence of Dimensionality on Ensemble Perfor-

mances
Dim. Single Ensemble Corr.
70 DF 91.732 +£0.614 94.107 + 0.357 0.847
PCA 92.078 + 0.668 94.267 + 0.125 0.851
60 DF  92.257 £ 0.565 94.433 £ 0.414 0.853
PCA 92.213 + 0.601 94.440 £+ 0.480 0.854
50 DF  92.820 £ 0.513 94.780 + 0.326 0.872
PCA 93.078 + 0.488 94.660 &+ 0.477 0.869
40 DF 93.356 £ 0.634 95.040 + 0.438 0.885
PCA 93.299 + 0.479 94.830 £+ 0.299 0.880
30 DF 94.153 £ 0.516 95.683 + 0.381 0.903
PCA 93.581 + 0.366 94.886 + 0.328 0.893
20 DF  91.482 4+ 0.895 97.380 +0.372 0.786
PCA 93.968 + 0.519 95.039 &+ 0.416 0.905
10 DF  66.587 £ 0.660 93.113 + 2.998 0.130
PCA 94408 +£ 0.429 95.113 + 0.298 0.924
5 DF  65.298 + 4.806 89.463 + 6.453 0.107
PCA 94.520 + 0.403 95.007 £+ 0.288 0.942

4.1.5 Set 5

Table 6 presents the results for the fifth data set, which is similar to the first
dataset but there is overlap among the relevant features for the classes.'® Be-
cause of this overlap, this feature set has fewer total relevant features and thus
it constitutes a more difficult problem (as indicated by the results in Table 1).
This is also demonstrated by the similarity among the correlations for all the

10The single classifier used was an MLP with a single hidden layer consisting of 95 units,
trained using a learning rate of 0.2 and a momentum term of 0.5.
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different subset sizes. Unlike with the previous four data sets, the correlation
does not go down drastically here for a small subset, because the overlap among
the classes forces the classifiers to remain “coupled” to one another.

Table 6: Synthetic Dataset 5: Influence of Dimensionality on Ensemble Perfor-

mances

Dim. Single Ensemble Corr.
70 DF  81.778 £2.792 87.567 + 2.331 0.720
PCA 79.822 +2.733 86.100 + 2.173 0.706

60 DF  83.811 +£2.704 89.333 + 2.404 0.749
PCA 80.422 + 2.689 85.567 + 2.036 0.735

50 DF  85.056 + 2.605 90.233 + 1.664 0.796
PCA 81.056 + 2.406 86.467 + 1.335 0.729

40 DF  86.333 + 2.433 91.100 £ 2.122 (.802
PCA 79.933 + 2.685 84.933 + 1.389 0.732

30 DF  86.844 £ 2.155 91.467 + 1.771 0.795
PCA 79.878 +2.625 85.600 &+ 1.254 0.732

20 DF  86.967 £ 2.632 92.267 £+ 1.806 0.783
PCA 79.656 £ 2.798 84.500 &+ 1.590 0.743

10 DF  85.756 + 2.825 98.133 + 0.980 0.707
PCA 79.122 +£ 2249 85.133 £ 1.910 0.755

5 DF  81.956 + 4.192 95.467 £+ 1.614 0.706
PCA 70.856 + 2.427 78.200 £+ 1.507 0.683

In spite of these difficulties, input decimation ensembles perform extremely
well. Indeed, they significantly outperform both the original ensemble and PCA
ensembles on all but a few subsets where they only provide marginal improve-
ments. Furthermore the input-decimated single classifiers also outperform their
original and PCA counterparts for all but the 60 and 70 feature subsets. This
experiment demonstrates that when there is overlap among classes, class in-
formation is crucial. Without this vital information, PCA cannot provide any
statistically significant improvements over the original classifier and ensembles.

4.2 UCI/Probenl Datasets

To complement the experiments discussed above, we also selected three datasets
from the UCI/PROBEN1 benchmarks [8, 51]: The Gene database from the
PROBENI (i.e., using train/validate/test split from PROBEN1), and the Splice
junction gene sequences and Satellite Image database (Statlog version) from
the UCI Machine Learning Repository. In these experiments, just as in those
described above, our classifiers consist of MLPs.

4.2.1 Data Description and Full Feature Set Performance

In this section we provide a brief description of the data sets and the individual
classifiers. The Gene dataset has 120 input features and three classes [45, 51].
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We selected component MLPs with a single hidden layer of 20 units, a learning
rate of 0.2 and a momentum term of 0.8. The Splice data consists of 60 input
features and three classes [8]. Here we selected MLPs with a single hidden layer
composed of 120 units, a learning rate of 0.05, and a momentum term of 0.1.
The Satellite Image data has 36 input features and 6 classes [8]. We selected
MLPs with a single hidden layer of 50 units, and a learning rate and momentum
term of 0.5.

Table 7: Average Accuracy of Original Network and Ensembles
Dataset Single Ensemble Correlation
Gene 83.417 £ .796 86.418 + .342 0.7910
Splice 84.722 + 534 85.372 £+ .631 0.9523
Satellite 87.785 + .685 89.010 £+ .273 0.7263

Table 7 provides the classification performance for single classifiers and en-
sembles on the full feature set for all three datasets'!. For the Gene data, the
average ensemble was significantly more accurate than the single network, while
for the Satellite Image and Splice data sets, the ensemble was only marginally
more accurate.

4.2.2 Fixed Input-Decimated Ensembles

This section describes experiments that mirror those above where we investigate
the performance of single classifiers and ensembles with “fixed” subsets of the
feature set (i.e., each base classifier sees the same number of features). For
the Gene and Splice datasets, we use increments of 10 features up to the full
set, while for the Satellite Image data we use increments of 9 features. The
classification performance for both the single classifiers and the ensembles on
all subsets, averaged over 20 runs, along with the corresponding correlation
values (i.e., correlation among classifiers in the ensemble) are given in Tables 8-
10 below.

In case of the Gene data, the average ensembles with 20, 30, and 40 inputs are
significantly more accurate than both the original network ensembles described
in the previous section and their PCA counterparts. Note also that the perfor-
mances of the PCA-based ensembles vary arbitrarily as the number of principal
components changes, while the performances of the feature-based ensembles are
more stable. This is consistent with the fact that principal components are not
necessarily good discriminative features, and eliminating particular principal
components have unpredictable effects on the classification performance.

In the Splice data experiments, all the decimated feature-based ensembles
significantly outperformed both the original ensemble and the PCA-based en-
sembles. What is particularly notable in this case is that a reduction of di-
mensionality based on PCA has a strong negative impact on the classification

' The ensemble consists of 3 classifiers for the Gene and Splice datasets and of 6 classifiers
for the Satellite Image dataset.
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Table 8: Gene Data: Influence of Dimensionality on Ensemble Performances

Dim. Single Ensemble Corr.
110 DF 83.636 + 0.930 86.482 + 0.851 0.800
PCA 76.595 +£1.086 85.876 + 0.529 0.394

100 DF 83.623 +1.165 86.419 + 0.731 0.791
PCA 76.166 + 0.561 85.574 + 0.837 0.457

90 DF  82.947 4+ 1.041 86.091 + 0.584 0.788
PCA 81.761 +1.222 85.839 + 0.885 0.729

80 DF  83.632 +1.216 86.457 &+ 1.015 0.794
PCA 83.316 £ 0.894 86.368 + 0.530 0.781

40 DF  84.237 £ 0.897 87.276 & 0.671 0.805
PCA 65.737 £ 2.141 80.958 + 0.806 0.240

30 DF  83.422 + 0.836 88.045 + 0.617 0.762
PCA 76.784 £1.645 84.767 = 0.919 0.523

20 DF  85.754 £ 0.955 89.546 + 0.548 0.734
PCA 67.192 £ 0.905 83.001 £ 0.697 0.665

Table 9: Satellite Image Data: Influence of Dimensionality on Ensemble Perfor-

mances

Dim. Single Ensemble Corr.
27 DF 86.512 +£ 0.764 86.482 + 0.851 0.923
PCA 87.863 +£0.572 88.820 &+ 0.154 0.897

18 DF 82.645 £ 1.164 86.419 £ 0.731 0.856
PCA 84.877 £1.031 89.510 £ 0.242 0.910

9 DF 70.679 + 0.838 86.091 + 0.584 0.395
PCA 83.574 £0.756 89.035 + 0.252 0.948

performance. With 20 principal components for example, the performance of
the single classifiers drops by 7 %, whereas the performance of the DF single
classifier increases by 3 %. The improvement of the performance of the single
classifiers due to decimation is an initially surprising aspect of these experi-
ments (unlike the synthetic data sets, one does not expect to find too many
“irrelevant” features in these real datasets). However, an analysis shows that
the inputs that were decimated were in fact providing “noise” to the classifier.
The curse of dimensionality is affecting us here—theoretically, the learning al-
gorithm should be able to figure out which features are noisy and give them
less importance; however, in practice, this is difficult to do with limited training
data.

In case of the Satellite Image data however, the input-decimated ensemble
with 27 features was the only one that did not perform significantly worse than
the single neural network and the original ensemble. This is the data set with
the lowest dimensionality, and shows two things: (i) in order to take advantage
of input decimation, the initial dimensionality has to be high; and (ii) if there are
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Table 10: Splice Data: Influence of Dimensionality on Ensemble Performances

Dim. Single Ensemble Corr.
50 DF  85.152 + 0.619 86.896 + 0.312 0.857
PCA 83.230 £ 0.868 85.014 £+ 0.767 0.861

40 DF  86.460 &+ 0.607 88.532 + 0.523 0.855
PCA 82.286 + 0.824 84.939 £+ 0.556 0.838

30 DF  87.880 &+ 0.928 90.329 + 0.833 0.859
PCA 81.276 £ 0.726 84.073 £ 0.355 0.805

20 DF  88.310 + 0.666 92.380 + 0.714 0.792
PCA 79.263 + 0.548 82.493 £+ 0.495 0.785

10 DF  84.669 + 0.561 92.342 + 0.737 0.719
PCA 78.109 + 0.542 80.066 + 0.400 0.816

features that have significant meaning, they need to be included in the feature
set regardless of their correlation to the particular output. A potential solution
to this problem is to select “wild card” features based on correlation with all the
classes and include them in each decimated subset. PCA significantly outper-
formed input decimation on this dataset. We believe the reason for this is the
following. We observed that consecutive groups of four features in the satellite
image data set correspond to spectral values for a given pixel. In examining the
eigenvalues and eigenvectors, we found that the highest eigenvalue was 91.6%
of the sum of the eigenvalues, and the corresponding eigenvector was a simple
linear combination of the four spectral values across all the pixels. In this case,
the higher principal components provide good discriminative features.

4.2.3 Variable Input-Decimated Ensembles

With the UCI/Probenl datasets there is no reason to assume that each of the
classifiers in an ensemble should have the same number of features. Therefore
we have performed experiments where we allowed the subsets to vary in size.
To select the number of features for each class, we first plotted the correlation
between each feature and that class in decreasing order. We found consecutive
features with the largest differences in correlation by inspection and set break
points between them. We then selected the feature subsets with the most nat-
ural break points as the significant features. The experiments reported below
show the potential of using variable numbers of features. We are currently in-
vestigating more formal methods to automate the selection of the number of
features for each classifier.

Table 11 provides the classification performance for single classifiers and
ensembles on the decimated feature sets for the three data sets. The second col-
umn provides the number of features present in each of the classifiers (i.e., for
Gene the first classifier in the ensemble had 11 features, the second had 8 while
the third had 14). For the Gene database, the variable input-decimated ensem-
bles improved upon the fixed subset input decimation results (which themselves
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Table 11: Variable Input Ensembles.

Dataset  Features/Class Single Ensemble Corr.
Gene 11-8-14 82.211 £ 0.857 90.757 £ 0.615 0.6334
Satellite = 27-27-9-18-27-27 80.483 £ 0.890 88.370 &+ 0.005 0.6361
Splice 13-10-21 87.833 £ 0.641 92.371 £ 0.335 0.7719

were an improvement over the original ensemble). For the Splice dataset, the
improvements over the original ensemble are even greater, although the results
are statistically equivalent to those obtained with fixed subsets of 10 and 20
features. As for the satellite image dataset, variable input-decimated ensembles
improved upon the fixed input-decimated ensembles, but still fell short of the
original ensembles (for the same reasons that we highlighted in Section 4.2.2).

5 Discussion and Conclusions

This paper discusses input decimation, a dimensionality reduction method for
ensemble classification. We present experimental results demonstrating that
input decimation is a promising machine learning method that yields superior
results by combining the strengths of dimensionality reduction and ensembles.
Specifically, we show that, in many cases, the single decimated classifiers out-
perform the single original classifier (trained on the full feature set), which
demonstrates that simply eliminating irrelevant features can improve perfor-
mance. In addition, eliminating irrelevant features in each of many classifiers
using different relevance criteria (in this case, relevance with respect to different
classes) often yields significant improvement in ensemble performance, as seen
by comparing our decimated ensembles to the original ensembles. Selecting
the features using class label information also provided significant performance
gains over PCA-based ensembles. Furthermore, using subsets of the original
features instead of new features allows human operators to gain more insight
into how each classifier and ensemble makes its decisions, alleviating a serious
difficulty in interpreting results in large data mining problems [20, 49].

Through our tests on real and synthetic datasets, we show certain character-
istics that datasets need to have to fully benefit from input decimation. Namely,
we show that input decimation performs best when there are a large number of
features (e.g., where it’s likely that there will be irrelevant features) and when
the number of training examples is relatively small (i.e., where it’s difficult to
properly learn all the parameters in a classifier based on the full feature set). In
these cases, decimation removes the extraneous features, thereby reducing noise
and reducing the number of training examples needed to produce a meaningful
model (i.e., alleviating the curse of dimensionality).

An interesting observation is that input decimation works well in spite of
our rather crude method of choosing the relevant features (i.e., statistical cor-
relation). One reason why this simple method succeeds is that we have greatly
simplified the relevance criterion: only the relevance of the features to a single
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class is taken into consideration, rather than the discriminatory ability across
all classes. Nevertheless, we are currently extending this work in three direc-
tions: considering cross-correlations among the features; investigating mutual
information based relevance criteria; and incorporating global relevance into the
selection process. We are confident that a fully developed input-decimated en-
semble method will provide an easy to use, understandable and robust method
for addressing high-dimensional classification problems that are common in data
mining.
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